

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

This thesis was done at the MOVES Institute
Approved for public release; distribution is unlimited

GENETIC ALGORITHMS IN THE BATTLESPACE
TERRAIN REASONING AND AWARENESS—BATTLE

COMMAND (BTRA-BC) BATTLE ENGINE

by

Kenneth J. Maroon

September 2009

 Thesis Co-Advisors: Curtis Blais
 Jeff Appleget

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2009

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Genetic Algorithms in the
Battlespace Terrain Reasoning and Awareness—Battle
Command (BTRA-BC) Battle Engine
6. AUTHOR(S) Kenneth J. Maroon

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and
do not reflect the official policy or position of the Department of Defense or the U.S.
Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The U.S. Army Corps of Engineers Research and Development Center’s (ERDC)
Battlespace Terrain Reasoning and Awareness-Battle Command (BTRA-BC) Battle
Engine (BBE) is a tool that enables command staffs to semi-automate the
creation and evaluation of potential courses of action (COA) for use in
military planning. The BBE uses data generated during the initial steps of
the Military Decision Making Process (MDMP) and a genetic algorithm to produce
and evaluate a population of COAs. This thesis provides a basic background of
both the MDMP and genetic algorithms. It describes the features of the BBE
and the parameters that control its genetic algorithm. The thesis describes
an experiment to test the genetic algorithm parameter effects on the BBE
search results. The results of this experiment and research are used to
provide recommendations to improve the performance and functionality of the
BBE.

15. NUMBER OF
PAGES

119

14. SUBJECT TERMS Genetic Algorithms, Military Decision Making
Process, Mission Planning, Course of Action, Wargaming, Battle
Simulation

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

GENETIC ALGORITHMS IN THE BATTLESPACE TERRAIN REASONING AND
AWARENESS—BATTLE COMMAND (BTRA-BC) BATTLE ENGINE

Kenneth J. Maroon
Lieutenant, United States Navy

B.S., United States Naval Academy, 2001

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN
MODELING, VIRTUAL ENVIRONMENTS AND SIMULATION (MOVES)

from the

NAVAL POSTGRADUATE SCHOOL
September 2009

Author: Kenneth J. Maroon

Approved by: Curtis Blais
Co-Advisor

Jeff Appleget
Co-Advisor

Mathias Kölsch
Chairman, MOVES Academic Committee

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The U.S. Army Corps of Engineers Research and

Development Center’s (ERDC) Battlespace Terrain Reasoning

and Awareness-Battle Command (BTRA-BC) Battle Engine (BBE)

is a tool that enables command staffs to semi-automate the

creation and evaluation of potential courses of action

(COA) for use in military planning. The BBE uses data

generated during the initial steps of the Military Decision

Making Process (MDMP) and a genetic algorithm to produce

and evaluate a population of COAs. This thesis provides a

basic background of both the MDMP and genetic algorithms.

It describes the features of the BBE and the parameters

that control its genetic algorithm. The thesis describes

an experiment to test the genetic algorithm parameter

effects on the BBE search results. The results of this

experiment and research are used to provide recommendations

to improve the performance and functionality of the BBE.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. THE MILITARY DECISION-MAKING PROCESS1
B. FASTER COA CREATION2
C. GENETIC ALGORITHMS3
D. REASEARCH QUESTIONS4
E. SCOPE ..4
F. ORGANIZATION OF THESIS5

II. BACKGROUND ..7
A. INTRODUCTION7
B. THE MILITARY DECISION-MAKING PROCESS7

1. Receipt of Mission7
2. Mission Analysis8
3. COA Development9
4. COA Analysis (War Game)11

a. Belt War Gaming11
b. Avenue-in-depth War Gaming12
c. Box War Gaming12

5. COA Comparison13
6. COA Approval14
7. Orders Production14

C. GENETIC ALGORITHMS16
1. Advantages of Genetic Algorithms17
2. The Basic Genetic Algorithm19
3. Population Controls20
4. Parent Selection21

a. Tournament Selection21
b. Roulette Wheel Selection22

5. Reproduction and Mutation23
a. One-point Crossover24
b. Schemata24
c. Mutation26
d. Two-point Crossover27

6. Convergence28
7. Niches29

D. SUMMARY ...33

III. THE BTRA-BC BATTLE ENGINE35
A. INTRODUCTION35
B. MISSION ANALYSIS AND INITIAL INPUTS35

1. Terrain36
2. Order of Battle40
3. Postures and Morale44

C. COA CREATION45

 viii

1. Offensive COA Variables47
2. Defensive COA Variables51

D. WARGAMING ...54
1. Desired End State54
2. Battle Visualization55
3. COA Evaluations56

E. THE BBE GENETIC ALGORITHM57
1. Results and Analysis57
2. Genetic Algorithm Parameters61

F. SUMMARY ...63

IV. METHODS ..65
A. INTRODUCTION65
B. THE SCENARIO65
C. PARAMETERS TESTED67

1. Analysis of Impact of Selection Technique67
2. Analysis of Impact of Replacement Policies ...68
3. Analysis of the Crowding Model68

D. DATA COLLECTION69
E. SUMMARY ...69

V. RESULTS AND ANALYSIS71
A. INTRODUCTION71
B. GENERAL STATISTICS71
C. SELECTION TECHNIQUE72
D. CROSSOVER ...72
E. REPLACEMENT POLICY73
F. THE CROWDING MODEL74
G. SUMMARY ...75

VI. CONCLUSIONS AND RECOMMENDATIONS77
A. INTRODUCTION77
B. CONCLUSIONS77
C. IMPROVEMENTS TO THE BBE78
D. FUTURE WORK80
E. SUMMARY ...81

APPENDIX A. THE GENETIC ALGORITHM TEST SCENARIO—ORDERS OF
BATTLE AND ECOAS83
A INTRODUCTION83
B. ORDERS OF BATTLE83

1. Friendly Order of Battle83
2. Enemy Order of Battle85

C. ECOAS ...88

APPENDIX B. BBE RUN RESULTS93

LIST OF REFERENCES ..97

INITIAL DISTRIBUTION LIST99

 ix

LIST OF FIGURES

Figure 1. Wargaming using the yellow sticky drill (From
Schlabach, 2008, p. 8)............................2

Figure 2. The Military Decision-Making Process (From U.S.
Army, 1997, pp. 5-2)..............................8

Figure 3. The steps in mission analysis (From U.S. Army,
1997, pp. 5-5)....................................9

Figure 4. An example of COA statement and Sketch (From
U.S. Army, 1997, pp. 5-15).......................10

Figure 5. Belt war gaming (From U.S. Army, 1997, pp. 5-18).11
Figure 6. Avenue-in-depth war gaming (From U.S. Army,

1997, pp. 5-19)..................................12
Figure 7. Box war gaming (From U.S. Army, 1997, pp. 5-19)..13
Figure 8. Example decision matrix showing two ways to make

comparisons (From U.S. Army, 1997, pp. 5-26).....14
Figure 9. Staff inputs and outputs (From U.S. Army, 1997,

p. 4)..15
Figure 10. Hill climbing can easily find the peak of the

first surface, but it may become caught in the
local maximum on the second (From Goldberg,
1989, pp. 3-4)...................................18

Figure 11. A roulette wheel constructed from the sample
population in Table 1 (From Goldberg, 1989, p.
11)..23

Figure 12. Plots for a value (x) over a multi-peak
function, f(x). The potential solution
populations at generation 100 for two different
genetic algorithms, both searching for the value
of x that maximizes f(x) are marked as points on
the curve and circled. The first genetic
algorithm includes sharing in its fitness
function, while the second does not (After
Goldberg, 1989, p. 194)..........................31

Figure 13. The BBE Mission Building menu....................36
Figure 14. The MCOO loader in the Mission Building menu.....37
Figure 15. An example of a Braswell Index. The lines

“bisect the Mobility Corridors between the
obstacles” (From Schlabach, 2008, p. 7)..........38

Figure 16. BBE game board with several V-Lanes highlighted.
The mission start point and objective have also
been annotated...................................39

Figure 17. BBE game board with a LDT circled. Note how it
intersects the V-Lanes seen in Figure 16.........40

 x

Figure 18. The B-WACT is used to build units for use in the
BBE..41

Figure 19. The Weapons and Units Types tab. In this menu,
mission planners can load B-WACT weapons lists
and build units..................................42

Figure 20. The Enemy OB tab. The base power of the
subordinate command is circled in red............43

Figure 21. The Friendly OB tab. The subordinate command
tabs are circled in red..........................43

Figure 22. Controls for force postures, morale and
superiorities....................................44

Figure 23. The FCOA creation menu with offensive COA
variables..45

Figure 24. Graphical visualization of the FCOA displayed in
Figure 23. Since this is an offensive COA,
units are assigned V-Lanes to define their
movement. The exclamation points indicate
priority for GS. The values underneath the unit
names display the units’ percentage of general
support, the units’ core combat power and the
combat power of any subordinate forces Task
Organized (TO) to the unit. Each unit’s total
combat power is displayed in bold................47

Figure 25. The ECOA creation menu with defensive COA
variables..52

Figure 26. Graphical visualization of the ECOA displayed in
Figure 25. In this defensive COA, units are
positioned at LDT-5. Each unit is given a range
of V-Lanes that they are responsible for
blocking. D Company is set to act as reserves
for B Company....................................53

Figure 27. The Wargame menu.................................54
Figure 28. The Desired End State menu.......................55
Figure 29. The Battle visualization screen. Controls at

the bottom of the screen allow the user to
advance the simulation. Unit information and MC
data are displayed to the right of the MCOO......56

Figure 30. An FCOA evaluation matrix........................57
Figure 31. The BBE Search Results menu......................58
Figure 32. The Cream of the Crop display....................59
Figure 33. The Risk Analysis window.........................60
Figure 34. The Evaluation Criteria Analysis window..........60
Figure 35. The Pareto Analysis window.......................61
Figure 36. The Genetic Algorithm Search Parameters menu.

Currently, only items in the on the left side
are implemented..................................62

 xi

Figure 37. Battle variables for the test scenario...........66
Figure 38. The COA evaluation criteria. Note “sub-MC”

criteria are for the mobility corridors at the
end of the various V-Lanes.......................67

Figure 39. Convergence plots from three search runs. The
first is from a full Darwin search, the second a
half Darwin, and the third a full parricide. In
each plot, the black represents the best FCOA
score, grey is the average score, and yellow is
the worst score..................................74

Figure 40. General Support Units. The first column
indicates if a unit is Task Organizable. The
fourth column shows a unit’s Base Combat Power
(BCP)..83

Figure 41. 1st Combined Arms Battalion84
Figure 42. 2nd Combined Arms Battalion84
Figure 43. Reconnaissance, Surveillance, and Target

Acquisition (RTSA)Squadron.......................85
Figure 44. General Support Units............................85
Figure 45. Alpha Company was composed of BMP-2 infantry

fighting vehicles................................86
Figure 46. Bravo Company....................................86
Figure 47. Charlie Company..................................87
Figure 48. Delta Company was composed of T-80U tank

platoons...87
Figure 49. Balanced defense with Tank Company in reserve....88
Figure 50. Balanced defense with tank platoons integrated

into Alpha, Delta, and Charlie Companies.........89
Figure 51. Forward defense with tank platoons kept in

reserve..90
Figure 52. Strong right defense with tank platoon

supporting Alpha Company.........................91
Figure 53. Strong left defense with Delta Company in

reserve of Charlie Company.......................92

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. A sample population of four strings, their
fitness scores, and percentage of the total
fitness sum (From Goldberg, 1989, p. 11).........22

Table 2. The configuration of parameters for crossover,
breeding probability and mutation used to test
selection techniques.............................68

Table 3. Comparisons of selection technique performance...72
Table 4. Comparisons for crossover technique..............73
Table 5. Comparisons of replacement polices...............73

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF ACRONYMS AND ABBREVIATIONS

AA Avenue of Approach

AO Area of Operations

BBE BTRA-BC Battle Engine

BN Battalion

BTRA-BC Battlespace Terrain Reasoning and Awareness–
Battle Command

B-WACT BBE Weapons Assessment and Calculation Tool

C2 Command and Control

COA Course of Action

CCIR Commander’s Critical Information Requirement

DES Desired End State

ECOA Enemy Course of Action

FCOA Friendly Course of Action

F&S Follow on Support

GUI Graphical User Interface

GS General Support

IPB Intelligence Preparation of the Battlefield

ISR Intelligence, Surveillance, and
Reconnaissance

JPME Joint Professional Military Education

LDT Line of Defensible Terrain

MC Mobility Corridor

MCOO Modified Combined Obstacle Overlay

MDMP Military Decision-Making Process

 xvi

METT-T Mission, Enemy, Terrain, Troops and Time

OB Order of Battle

OBJ Objective

QJMA Quantitative Judgment Method of Analysis

RTSA Reconnaissance, Surveillance, and Target
Acquisition

SEED Simulation Experiments and Efficient Designs

SQD Squad

TO Task Organizable

V-Lanes Virtual Lanes

 xvii

ACKNOWLEDGMENTS

I would like to start by thanking Curtis Blais for

giving me the opportunity to work with the BBE and for his

continued guidance throughout the writing process. I would

also like to thank Jeff Appleget for assisting me on an

extremely short notice. Jerry Schlabach was the key source

for information on the BBE and genetic algorithms, and

without his expertise in both areas, I do not know if this

thesis would have been possible.

I appreciate the hard work and dedication of the

entire MOVES faculty and thank them for their

professionalism. To my fellow classmates, thank you for

all the long hours we spent together working on projects,

studying for exams, and joking around. Thank you to my

parents, William and Jane Maroon, for giving me a love of

learning and pushing me work hard in academics.

Finally, I would like to thank my wife, Aisha. Her

love and support over the past two years have made even the

longest lectures and toughest assignments seem a little bit

more bearable. I could not have had a better partner with

whom to enjoy my time here in Monterey. Most importantly,

she was the only person who could get me to put away my

surfboard and start writing.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. THE MILITARY DECISION-MAKING PROCESS

According to the United States Army Field Manual, the

military decision-making process (MDMP) is a “proven

analytical process,” that can help “the commander and his

staff examine a battlefield situation and reach logical

decisions” (U.S. Army, 1997, pp. 5-1). While there are

several advantages to using the MDMP, its critical weakness

is that it is a time-consuming process. A central part of

the MDMP is the development, analysis, and comparison of

Friendly and Enemy Courses of Action (FCOAs and ECOAs).

At the lowest level, the evaluation of COAs can be

accomplished by moving annotated post-it notes across a map

of the operational area, also called a “yellow sticky

drill” (Schlabach, 2008, p. 8). These post-it notes (or

“yellow stickies”) represent tactical units and allow

planners to see how particular FCOAs and ECOAs fare against

each other. As friendly and enemy units are moved across

the map, approximations about unit strength and ability are

used to resolve engagements and calculate losses. Figure 1

shows a group of planners engaged in a yellow sticky drill.

 2

Figure 1. Wargaming using the yellow sticky drill (From
Schlabach, 2008, p. 8)

Ultimately, the number of COAs that could be tested

depended on the amount time available for wargaming. The

need to make timely decisions may rush mission planners and

not allow for an adequate investigation of all possible

options.

B. FASTER COA CREATION

The U.S. Army Corps of Engineers Research and

Development Center (ERDC) is currently working on a

software tool to semi-automate the process of COA creation

and evaluation. The Battlespace Terrain Reasoning and

Awareness–Battle Command (BTRA-BC) Battle Engine (BBE) is a

tool that enables command staff to quickly conduct military

planning and evaluation of battle plans. The BBE gives its

users the ability to construct tactical units with defined

attack, defense, and other attributes. It also

incorporates terrain data to provide a map of the

operational area with distinct mobility corridors. These

building blocks enable planners to quickly construct COAs

and conduct a virtual yellow sticky drill. Additionally,

 3

the BBE abstracts COA characteristics, such as unit

formations, movements, and responsibilities to a binary

string. The COAs can then be evaluated and scored

according to the user’s desired criteria. Finally, the BBE

also has the ability to apply a genetic algorithm to the

COA binary string to produce thousands of possible

alternative COAs and their respective evaluations.

C. GENETIC ALGORITHMS

Developed by John Holland in the early 1970s, genetic

algorithms reflected his belief that features of natural

evolution could be used by a computer algorithm to solve

difficult problems (Davis, 1991, p. 3). Genetic algorithms

rely on a pool of possible solutions to a given problem.

These solutions are encoded as binary strings and

evaluated. Then a portion of the possible solutions are

selected for reproduction, with higher ranking solutions

having a greater probability of selection. Reproducing

solution strings are paired as parents and recombine with

each other to create new child solution strings.

Additionally, some strings are mutated, to reflect

biological evolution, and provide more diverse solutions.

The new strings are evaluated and added to the pool of

possible solutions to create the next generation of

strings. Since better performing solution strings have a

greater probability to be selected for reproduction, each

generation should contain increasingly higher performing

solutions.

Holland explained the power of genetic algorithms in

his schema theorem. He identified patterns in the solution

strings called schema. These schemata represented partial

 4

pieces of a total solution. Through the breeding process,

more successful schema are brought together to make

improved solution strings. This process allows genetic

algorithms to evaluate and combine multiple schemata

simultaneously.

D. REASEARCH QUESTIONS

The BBE’s genetic algorithm allows it to essentially

conduct multiple yellow sticky drills for each generation

of COAs that it produces. While this is an important

feature of the software, it is important to understand how

the genetic algorithm behaves and what it is actually

producing for the user. Additionally, the BBE gives its

users several advanced controls over the genetic algorithm.

These capabilities raise the following areas of research:

1. Does the BBE’s genetic algorithm actually provide
a significant number of useful alternative FCOAs?
Can the user separate tactically desirable FCOAs
from outcomes that are not logical?

2. How do changes to the genetic algorithm
parameters affect the FCOAs that are produced?
How do parameters affect the diversity and
convergence of the BBE results?

3. Does the BBE provide adequate background on the
genetic algorithm and its settings to allow users
to understand what they are actually changing?
Should the BBE explain the effects, benefits, and
limitations of the genetic algorithm settings?

E. SCOPE

The main goal of this thesis is to determine what

effects the genetic algorithm parameters have, and to

suggest possible improvements to the program regarding the

genetic algorithm. This thesis will examine how the

 5

genetic algorithm parameters affect output and the

diversity of the suggested FCOAs. The thesis will provide

background information on the MDMP and genetic algorithms

that are applicable to the BBE. Since any discussion of a

particular piece of the BBE will require a basic

understanding the complete program, a simple background of

the BBE will be provided.

F. ORGANIZATION OF THESIS

This thesis is organized into the following chapters.

Chapter I—Introduction. This chapter gives an

abstract description of the MDMP, the BBE, and genetic

algorithms. It also identifies the research questions and

scope of the thesis.

Chapter II—Background. This chapter has two main

focuses, the MDMP and genetic algorithms. The chapter

provides basic understanding of both and assists in

understanding the BBE functions and settings.

Chapter III—The BBE. This chapter outlines some of

the features of the BBE, particularly the parts of the

program that involve the genetic algorithm.

Chapter IV—Methods. This chapter describes the

evaluation of the BBE’s genetic algorithm and its various

settings.

Chapter V—Results and Analysis. This chapter outlines

the results of the BBE runs analysis of the findings.

 6

Chapter VI—Conclusions and Recommendations. This

chapter states what conclusions can be drawn from the

evaluation and suggests improvements to the BBE. It also

includes the future work section.

 7

II. BACKGROUND

A. INTRODUCTION

Before discussing the BBE, it is important to provide

some background information on both the MDMP and genetic

algorithms. This chapter gives an outline of the steps in

the MDMP and illustrates the time commitment involved.

This chapter also provides a basic explanation of genetic

algorithms and the different techniques involved in their

implementation.

B. THE MILITARY DECISION-MAKING PROCESS

The U.S. Army Field Manual 101 Chapter 51 outlines the

Military Decision-Making Process (MDMP). According to the

field manual, there are seven steps in the process:

Receipt of Mission, Mission Analysis, COA Development, COA

Analysis, COA Comparison, COA Approval, and Orders

Production. Figure 2 illustrates the flow of the MDMP as

well as the Commander’s responsibilities at each step.

1. Receipt of Mission

The MDMP starts with the receipt of the mission.

Critical products of this step include the commander’s

initial guidance and a warning order. These products

outline the time allocation, personnel, and operations

necessary to continue the MDMP.

1 This publication has been superseded by Field Manual 5-0 Army

Planning and Orders Production published in January 2005. The steps in
the MDMP process are the same and for background information purposes
there are no significant changes.

 8

Figure 2. The Military Decision-Making Process (From U.S.
Army, 1997, pp. 5-2)

2. Mission Analysis

The second step in the process, mission analysis, is

important because “it allows the commander to begin his

battlefield visualization” (U.S. Army, 1997, 5-5). The

field manual outlines 17 steps for mission analysis,

illustrated in Figure 3. These steps do not have to be

completed in order. A critical step in mission analysis is

to conduct the Intelligence Preparation of the Battlefield

(IPB) process. The IPB defines the operational

environment, analyzes threats, and identifies possible

ECOAs (U. S. Army, pp. 5-6). IPB products such as the

enemy order of battle and the modified combined obstacle

overlay (MCOO) “are updated and used throughout [the MDMP

process]” (U.S. Army, 1997, pp. 5-6). The warning order

 9

containing a summary of information gathered in the

previous steps is the final product of mission analysis.

Figure 3. The steps in mission analysis (From U.S. Army, 1997,
pp. 5-5)

3. COA Development

In this step, the staff begins to develop plans that

are able to meet mission objectives as well as remain

aligned with the commander’s intent and guidance outlined

in the warning order. The COA is expected to meet five

basic criteria. The COA must be suitable for the mission.

It should be feasible with available resources. It has to

be acceptable in terms of risk verse reward. The COA must

be distinguishable from other proposed plans of action.

Finally, the COA must be a complete statement of the

mission and objectives (U.S. Army, 1997, pp. 5-11). It is

important note that this step is not complete with the

creation of one COA, but instead, generates multiple

 10

options for the commander. Each COA is accompanied by a

COA statement and sketch. The statement gives a quick

summary of the unit movements and objectives. The sketch

provides a visual illustration of the COA. An example of a

COA statement and sketch is provided in Figure 4.

Figure 4. An example of COA statement and Sketch (From U.S.
Army, 1997, pp. 5-15)

 11

4. COA Analysis (War Game)

The analysis or “war gaming” is the process through

which a COA is tested, modified, and improved (U.S. Army,

1997, pp. 5-16). In this step, each COA is enacted on

paper against likely ECOAs and evaluated. The criteria for

the evaluation are based on the principles of war,

doctrinal fundamentals, the commander’s intent, and the

level of residual risk (U.S. Army, 1997, pp. 5-18). The

field manual describes three recommended techniques for war

gaming.

a. Belt War Gaming

This style of war gaming divides the area of

operations (AO) into a series of distinct sections or belts

that run the full width of the battlespace. The belt

technique is useful for phased operations, situations

facing an enemy arrayed in echelons, or terrain that can be

easily divided (U.S. Army, 1997, pp. 5-18). Events in each

belt are analyzed in order and any particular belt can

contain more than one critical event (U.S. Army, 1997, pp.

5-18). An example of belt war gaming is seen in Figure 5.

Figure 5. Belt war gaming (From U.S. Army, 1997, pp. 5-18)

 12

b. Avenue-in-depth War Gaming

The avenue-in-Depth technique isolates each

avenue of approach in a particular COA and examines it

individually. This style is particularly useful in

offensive battles or when terrain forces movements in to

set channels (U.S. Army, 1997, pp. 5-19). An example is

provided in Figure 6.

Figure 6. Avenue-in-depth war gaming (From U.S. Army, 1997,
pp. 5-19)

c. Box War Gaming

Box war gaming analyzes only important areas of

the AO, such as enemy engagement zones or locations of

critical objectives. This style is best used in limited

time and narrows the focus efforts on essential tasks (U.S.

Army, 1997, pp. 5-19). An example of box war gaming is

shown in Figure 7.

 13

Figure 7. Box war gaming (From U.S. Army, 1997, pp. 5-19)

Once a technique has been selected the war game

“follows an action-reaction-counteraction cycle” (U.S.

Army, 1997, pp. 5-22). Offensive units initiate an action

that the defensive unit responds to with a reaction. The

offensive unit can then answer the reaction with a counter

action. This cycle continues until completion of the COA

or it becomes apparent that the COA is not suitable. War

game results are recorded and the acceptable COAs are

refined to include updated task organizations and missions.

5. COA Comparison

The main product during this step is the COA decision

matrix. The decision matrix uses results from the war

gaming exercises to highlight advantages and disadvantages

of the COAs that were found to be suitable. There is no

standard decision matrix, and each command may have a

different style. A decision matrix can have quantitative

or subjective information displayed. The only requirement

is that it satisfies the commander and it provides a quick,

consistent, and accurate comparison of the available COAs.

Figure 8 provides an example of a decision matrix showing

both subjective analysis and comparison over categories.

 14

Figure 8. Example decision matrix showing two ways to make
comparisons (From U.S. Army, 1997, pp. 5-26)

6. COA Approval

At this step, the commander selects the COA that he

believes to “be most advantageous” (U.S. Army, 1997, pp. 5-

26). He also refines his intent statement and resource

requirements to be in line with the approved COA. A final

warning order is issued that reflects the COA selection and

new information.

7. Orders Production

The final step in the process results in the

production of an OPLAN or OPORD that reflects the COA

selected in the previous step. The staff expands the COA

into a concept of operations statement that subordinates

can use to guide their actions. This statement makes clear

“where, when, and how to concentrate combat power to

 15

accomplish the mission in accordance with [the] higher

commander’s intent” (U.S. Army, 1997, pp. 5-27).

The MDMP is a thorough but typically manpower

intensive process. Figure 9 illustrates the various

products that are required and produced at each step in the

process. Since each step flows naturally into the next,

and in turn is dependent on the previous step, time cannot

be saved by skipping or eliminating steps in the process.

Instead, the process can be shortened by faster creation

and evaluation of COAs or reducing the number of COAs

created.

Figure 9. Staff inputs and outputs (From U.S. Army, 1997, p.

4)

 16

C. GENETIC ALGORITHMS

Genetic algorithms were developed in the early 1970s

by John Holland in order to mimic the mechanisms that drove

natural evolution and to apply them to solving complex

problems (Davis, 1991, p. 2). The process of evolution is

dependent on chromosomes which act as the “encoding

structure of living beings” (Davis, 1991, p. 2). The

Handbook of Genetic Algorithms, notes the following

features of evolution:

 The process does not operate on living beings but
on their chromosomes.

 Natural selection is the determining factor of
successful chromosomes. Beings that have more
favorable chromosome encodings will reproduce
more than those that do not.

 Evolution takes place in reproduction.
Recombination and mutation create new chromosomes
from two parents in the child.

 Evolution is done without memory. The knowledge
of producing successful individuals is contained
in the gene pool of a population. (Davis, 1991,
pp. 2-3).

These features of evolution highlight some of the

requirements and characteristics of genetic algorithms.

Genetic algorithms are useful for searching a population of

possible solutions for the most appropriate one. Genetic

algorithms require that each possible solution in the

population be “coded as a finite-length string” (Goldberg,

1989, p. 7). This is usually assumed to be a binary

string. Genetic algorithms also require a type of

evaluation function to play the role of natural selection.

An evaluation, or “fitness,” function is the “link between

the genetic algorithm and the problem to be solved” (Davis,

 17

1991, p. 4). This function can take any possible solution

string and return the value of its fitness. This

information is then used by the genetic algorithm to

determine reproduction rates. Like evolution, the

reproduction process in a genetic algorithm is the main way

new encodings are introduced into the population. Parent

strings are selected and paired according to their fitness

function and mated with each other creating one or more

offspring (Haupt, 2004, pp. 41). The offspring represent a

recombination of the strings and, as Holland stated in the

schema theorem, the patterns (schema) present in the

parents. Additionally, some strings may be mutated by

having some of their bit values changed. Mutations are

important because they “introduce traits not in the

original population,” (Haupt, 2004, p. 43) and ensure that

the algorithm has the ability to generate all the possible

encodings of a solution. Finally, the new offspring are

introduced into the population and the process repeats

itself.

1. Advantages of Genetic Algorithms

Genetic Algorithms are not the only way to solve

complex problems, but they do offer several advantages over

more traditional methods. For example, consider a function

with a solution space shaped like a mountain. The peak of

the mountain could be found by having an algorithm choose

any random point on it. The algorithm would examine the

surrounding points and move to the highest one. This

process would repeat until the algorithm returned a

location that had no higher surrounding points. This

method is called hill climbing (Goldberg, 1989, pp. 3), and

 18

while it is useful for a single mountain, it cannot be used

to find the highest point in a solution space that includes

multiple peaks. Hill climbing is susceptible to any local

maximums in the solution space it is searching. It will

find a peak of any mountain in the solution space, but

there is no guarantee that the particular peak it returns

is the highest one. Figure 10 illustrates the weakness of

hill climbing.

Figure 10. Hill climbing can easily find the peak of the
first surface, but it may become caught in the local
maximum on the second (From Goldberg, 1989, pp. 3-4)

Unlike hill climbing, a genetic algorithm is able to

search solution spaces with multiple local maximums more

robustly. In the above mountain range example, a genetic

algorithm starts with a population of locations and a

fitness function that can return the elevation of any given

point. Since points with higher elevations are more likely

to be selected and reproduce the average elevation of the

population will increase over a number of generations.

Additionally, mutations ensure that the entire range of

possible locations remains available to the algorithm. The

 19

ability to choose the best point of a population of

locations allows the algorithm to move past any local

maximum it encounters.

2. The Basic Genetic Algorithm

Given the basic building blocks of a population of

encoded solutions, a fitness function, and a reproduction

process, a variety of different genetic algorithms can be

produced. While the building blocks may change depending

on the behavior desired by the developer, each instance of

a genetic algorithm follows similar steps.

1. Initialize a population of possible solution

strings.

2. Evaluate each string according to the fitness

function.

3. Create new strings by mating the current strings.

The probability of being selected for mating of

any particular string is determined by its

fitness score. Strings with higher fitness

scores have a higher probability to reproduce.

4. Delete members of the population as needed to

maintain desired number of strings.

5. Evaluate the new strings and insert them into the

population.

6. If an end-state is reached, return the solution

encoded by the string with the highest fitness

score; else, repeat process from step 3. (Davis,

1991, p. 5).

 20

These steps represent the most basic implementation of

a genetic algorithm. Different techniques for population

control, parent selection, and reproduction allow

programmers to tailor the performance of the algorithm.

3. Population Controls

The population of a genetic algorithm contains the

combined knowledge or explored area of a problem space.

There is no set required population size or need for the

population to remain constant in the algorithm (Goldberg,

1989, p. 62). However, some instances of the algorithm do

mandate maximum, minimum, or even constant levels of

population.

Without the removal of some strings, the population

size will increase with each generation as new solutions

are generated by reproduction. Generational genetic

algorithms discard all of the parent strings and form a new

population from their children in every generation (Coley,

1999, p. 83). This prevents growth of the population but

risks losing many of the best solution strings through

failures to reproduce, recombination, and mutation.

To help preserve higher ranking strings through

multiple generations, but still maintain a set population

size, many genetic algorithms use steady-state

reproduction. Steady-state reproduction creates a set

number of new strings and removes an equal amount in each

generation (Davis, 1991, p. 35). The determination of

which strings to remove is usually based on fitness scores.

Additionally an algorithm can discard child strings that

are duplicates of strings already in the population (Davis,

 21

1991, p. 37). The benefit of removing duplicates is a

“more efficient use of our allotted number of chromosomes

[strings]” (Davis, 1991, p. 37).

Two other issues that affect the population of a

genetic algorithm are elitism and seeding. Elitism entails

ensuring that the string with the highest fitness score is

carried from one generation to the next (Haupt, 2004, p.

245). This ensures that the most suitable solution

discovered so far is not lost due to failure to reproduce

or mutation. Seeding is done by inserting “good guesses to

the optimum [string] values in the initial population”

(Haupt, 2004, p. 249). Additionally, seeding can take

place throughout the algorithm by adding good guesses to

the population at each new generation.

4. Parent Selection

Parent selection in a genetic algorithm ensures that

the strings with the highest fitness scores are given the

best chance for reproduction. There are a variety of ways

to implement parent selection, with two of the most popular

being tournament and roulette wheel selection (Haupt, 2004,

p. 41).

a. Tournament Selection

Tournament selection starts by selecting a random

sub-set of two or more solution strings from the current

population. The string with the highest fitness score in

the sub-set is selected for reproduction. This process is

repeated until the required number of parent strings have

been selected (Haupt, 2004, p. 40).

 22

b. Roulette Wheel Selection

The first step in roulette wheel selection is to

calculate the sum of the fitness scores for all of the

strings. Next a random number between 0 and the total sum

of the fitness scores is generated. Then the fitness

scores of the population are added together in sequence and

a running total is recorded. The string whose fitness

score makes the running total greater than or equal to the

random number is selected for reproduction. A new random

number is generated to select each subsequent parent.

(Davis, 1991, p. 14).

This method of selection gives each string in the

population a position on an imaginary roulette wheel

proportional to their relative fitness score. The random

number represents the ball on the wheel and is more likely

to select strings with a greater area or higher fitness

score. Table 1 shows a sample population of four strings,

their respective fitness scores, and their percentage of

the total fitness sum. These percentages are then used to

create the roulette wheel shown in Figure 11.

Table 1. A sample population of four strings, their fitness
scores, and percentage of the total fitness sum

(From Goldberg, 1989, p. 11)

 23

Figure 11. A roulette wheel constructed from the sample

population in Table 1 (From Goldberg, 1989, p. 11)

One important consideration for parent selection

methods is selective pressure. Selective pressure is the

ratio of the probability that the string with the highest

fitness score is selected to the probability that the

average string is selected (Haupt, 2004, p. 41). If

selective pressure is too high, diversity in new

generations will suffer. This is caused by the highest

ranking string being over-selected for reproduction. In

tournament selection, the higher the number of strings in

each tournament, the greater the selective pressure. For

roulette wheel selection, the presence of super-

individuals, strings whose fitness scores are significantly

higher than the others, can greatly increase selective

pressure (Alba, 2006, p. 1-9).

5. Reproduction and Mutation

Reproduction is the recombination of strings that have

been selected to be parents. Most genetic algorithms

recombine strings in pairs. The pairing of parent strings

can be done randomly, or by ranking potential parents and

 24

having the best available strings mate with each other.

Additionally, some genetic algorithms can assign a

probability that strings selected for matting with each

other will go through the recombination process. The most

widespread form of recombination is through crossover.

a. One-point Crossover

The simplest method of recombination, one-point

crossover, “occurs when parts of two parent chromosomes are

swapped after a random selected point, creating two

children” (Davis, 1991, p. 17). An example of one-point

crossover can be seen by first creating two parent strings:

Parent A: 0 0 1 1 1 0

Parent B: 1 1 1 0 0 1

A crossover point for the two strings is then selected at

random. The characters occurring after the crossover point

are swapped between the strings creating two new child

strings. If the crossover point for the two strings above

came out to be three, then the strings would be divided

like this:

Parent A: 0 0 1 | 1 1 0

Parent B: 0 1 1 | 0 1 1

The new child strings would then be:

Child A: 0 0 1 0 1 1

Child B: 0 1 1 1 1 0

b. Schemata

One-point crossover illustrates the importance of

schemata in the genetic algorithms. A schema is a “fixed

 25

template describing a subset of strings with similarities

at certain defined positions” (Coley, 1999, p. 46). The

strings in the above example were constructed from the

characters 1 and 0. Schemata require a third character, #,

which acts as a placeholder and can equal either 1 or 0.

In the one-point crossover example above, both

the parent and child strings contained the schema:

0 # 1 # 1 #

The following schema is only found in Parent B and Child A:

 0 # 1 0 1 1

Schemata have two main properties:order and defining

length. Order is the number of fixed positions in the

schema (Goldberg, 1989, p. 29). In the two schemata above,

the first has an order of three and the second has an order

of five. Defining length is number of bits between the

first and last fixed position in a schema (Goldberg, 1989,

p. 29). The first schema has a defining length of four and

the second has a length of five.

John Holland’s Schema Theorem explains how the

manipulation of schemata through reproduction is the

critical element of genetic algorithms. Simplified, the

theorem states that schemata that are found in strings with

above average fitness scores will occur more frequently

than those found in below average strings (Davis, 1991, p.

20). Additionally, when using crossover reproduction, the

presence of schemata that have a low order, short defining

length, and above average fitness scores increases

exponentially in each generation (Goldberg, 1989, p. 33).

 26

Holland describes the ability of genetic

algorithms to manipulate large numbers of schemata in each

generation as intrinsic parallelism (Davis, 1991, p. 20).

In the early generations of a genetic algorithm, positive

schemata are spread throughout the population, giving many

strings parts of a good solution to the problem. Negative

schemata will also be spread through the population,

meaning strings may also contain parts of a “less optimal”

solution. Strings with more positive schemata will be more

likely to be selected for reproduction. Their

recombination with strings that also have positive

schemata, will start to bring the “pieces” of good

solutions together. At the same time that positive

schemata are being brought together, strings with mostly

negative schemata are not as likely to be selected for

reproduction. This causes the negative schemata to die out

in the population over several generations.

c. Mutation

Mutation is the second way that new strings are

added to the population. Unlike recombination, mutation

requires only one string instead of a pair. Mutation can

be performed on either parent or child strings. Mutations

are important in the population because they allow the

algorithm to have the possibility of generating schemata

that cannot be created through recombination of the current

generation. Mutation rates are usually kept low, but can

be changed depending on the problem being solved (Coley,

1999, p. 22). High mutation rates can interfere with the

algorithm’s ability to transfer schemata between

generations.

 27

Bit mutation is one example of how a string can

be mutated. Each bit in the string has a probability of

being replaced based on the mutation rate. A mutation rate

of 0.005 means, on average, that five out of every thousand

bits will be replaced. Replacement of bits can be done by

random selection of a new bit, or by forced swapping of the

current bit. Random selection replacement only causes

actual mutations in half of the bits picked for mutation.

This is due to the possibility that the randomly-selected

new bit value will be the same as the old value.

d. Two-point Crossover

A weakness of one-point crossover is that there

are some schemata that it cannot combine (Davis, 1991, p.

48). This is usually seen in schemata with fixed positions

at the edges of the solution string. An example can be

seen in the following two parent strings:

Parent A: 1 1 0 0 0 1 1

Parent B: 0 0 1 1 1 0 0

Parent A contains the schema:

 1 1 # # # # 1

One-point crossover is unable to produce this schema in

either of the child strings. While it is possible that the

schema could appear in the next generation due to mutation,

it is not likely unless mutation rates are high.

A technique to overcome this weakness is called

two-point crossover. It is similar to one-point crossover,

except two random crossover points are generated. The bits

between the two crossover points are then swapped between

 28

the two parents. If the crossover points for the two

strings above were two and five, then they would be divided

like this:

Parent A: 1 1 | 0 0 0 | 1 1

Parent B: 0 0 | 1 1 1 | 0 0

The following child strings would be produced:

 Child A: 1 1 1 1 1 1 1

 Child B: 0 0 0 0 0 0 0

Note that the schema from above is present in Child A.

6. Convergence

A properly implemented genetic algorithm should see

its population become less diverse with each generation as

more fit schemata begin to become more prevalent according

to the schema theorem. The movement of the population to

consisting of essentially similar individuals is called

convergence (Davis, 1991, p. 25). Looking at the two

solution spaces from the hill climbing example in Figure

10, a genetic algorithm would be expected to produce

solution populations that would converge toward the peaks

of the mountains over several generations. Convergence is

useful because it allows the algorithm to produce higher-

quality string populations, and return better solutions.

The less convergence that occurs in a genetic

algorithm, the more it resembles a random inspection of all

possible solutions. Too much diversity between generations

can hinder convergence, and may indicate that there is a

problem in the implementation of the genetic algorithm.

Generational genetic algorithms and high mutation rates

 29

generally hurt convergence. Crossover methods and

population size can also affect convergence (Haupt, 2004,

p. 109).

Genetic algorithms that converge too quickly are also

not desirable. Convergence after only a few generations

may mean that the algorithm is failing to make a reasonable

search of all of the possible solution space, and makes the

algorithm more susceptible to local peaks or valleys. .

Additionally, continuing to produce new generations after

convergence is inefficient. Once mutation becomes the main

source of new strings in a population, rather than

recombination, the algorithm should be stopped (Haupt,

2004, p. 47).

7. Niches

Niches exist as separate subdomains of a particular

function (Goldberg, 1989, p. 185). In the example of

searching a mountain range for the highest point, each

individual mountain could be thought of as a separate

niche. Searching for the highest point with a simple

genetic algorithm will produce a population of locations

centered on the peak of the highest mountain. To produce a

population containing representations of the niches around

each of the peaks requires modification of the basic

genetic algorithm.

One solution, proposed by David Goldberg and Jon

Richardson, uses a sharing function to calculate how

“similar” an individual string is to other strings. Higher

sharing values indicate a string exists in the same general

location of several other strings. The string’s fitness

function is then divided by its sharing value to produce a

 30

degraded fitness score. The degraded fitness score is then

used for selecting parents for reproduction in the genetic

algorithm (Goldberg, 1989, pp. 191-192). The net effect of

the sharing function is that strings that are similar to

other strings have their fitness scores lowered, allowing

dissimilar strings with relatively high fitness scores a

better chance of being selected for reproduction.

Figure 12 shows Goldberg and Richardson’s results from

a genetic algorithm that does not use sharing, and one that

does, when run on a multi-peak function without mutation.

 31

Figure 12. Plots for a value (x) over a multi-peak
function, f(x). The potential solution populations

at generation 100 for two different genetic
algorithms, both searching for the value of x that
maximizes f(x) are marked as points on the curve and

circled. The first genetic algorithm includes
sharing in its fitness function, while the second

does not (After Goldberg, 1989, p. 194)

 32

David Goldberg also outlines work by Kenneth De Jong

using overlapping populations and crowding factors to

implement a way to find niches in a genetic algorithm

(1989, pp. 111-116). De Jong uses a variable called a

generation gap to differentiate between nonoverlapping and

overlapping populations. In nonoverlapping populations,

the generation gap equals one, while in overlapping

populations it is a value between zero and one. The

generation gap represents the fraction of strings that will

be selected for breeding in an overlapping population. An

equal number of strings are also selected at random to be

replaced by the resulting child strings (Goldberg, 1989,

pp. 111).

De Jong’s crowding model uses an overlapping

population and a new parameter called the crowding factor.

In the crowding model, each newly-created child string

replaces an existing string in the population. To select

the string that will be replaced by a new child string, a

sub-set of strings in the current population is created.

The crowding factor equals the number of strings picked at

random in the sub-set. The string in the sub-set that is

most like the child string, based on a bit-by-bit

similarity count, is replaced. (Goldberg, 1989, p. 116)

Since new strings are more likely to replace strings

that are similar, strings with unique characteristics (but

with possibly lower fitness scores) have a greater chance

to be present in future generations. This is similar to

removing strings that are duplicates from the population.

 33

D. SUMMARY

This chapter described the steps in the MDMP and the

process of creating and evaluating COAs. This chapter also

showed how genetic algorithms have the capability to solve

complex problems, provided solutions can be encoded in some

type of string. The following chapter will show how the

BBE is able to encode COAs and apply a genetic algorithm to

rapidly create and wargame thousands of computer-generated

COAs.

 34

THIS PAGE INTENTIONALLY LEFT BLANK

 35

III. THE BTRA-BC BATTLE ENGINE

A. INTRODUCTION

The BTRA-BC Battle Engine (BBE) uses products created

in the mission analysis step of the MDMP to allow planners

to create COAs that can be evaluated and evolved in a

genetic algorithm. This chapter describes some of the

basic inputs, features, and functions of the BBE. In

addition, the user controls of the genetic algorithm are

defined.

Much of the information in this chapter comes from the

“Cognitive Amplification for Contextual Game-Theoretic

Analysis of Military Courses of Action,” which is an

invention disclosure for the BBE written by Jerry Schlabach

and Eric Nielsen.

B. MISSION ANALYSIS AND INITIAL INPUTS

Mission, Enemy, Terrain, Troops and Time (METT-T) are

some of the main considerations in the MDMP. Data on all

of these topics are gathered and studied during the IPB

process in mission analysis. METT-T data are some of the

initial inputs to the BBE. The BBE Mission Building menu,

seen in Figure 13, is where this information is entered.

 36

Figure 13. The BBE Mission Building menu

The Mission Building menu acts as the main hub for all

of the BBE functions and is the initial screen presented to

the user. This menu allows the user to load and save

battle scenarios. The buttons on the left side lead to

ECOA and FCOA construction menus and the Wargame menu.

Tabs in the middle section allow the user to enter

intelligence developed during the IPB. Additionally, the

user can enter the mission start and time slice to be used

for simulation.

1. Terrain

The MCOO, traditionally produced during the IPB, gives

mission planners an abstracted idea of the terrain in the

operational area. It outlines avenues of approach (AA) to

be used by attacking forces and the lines of defensible

terrain to be used the defending forces. In a yellow

 37

sticky drill, the MCOO would be the map that the units are

moved across. In the BBE, the MCOO is loaded at the bottom

of the Mission building menu as seen in Figure 14.

Figure 14. The MCOO loader in the Mission Building menu

The BBE uses a separate program to create MCOOs for

battle scenarios. The MCOO-Maker uses an abstraction of

the operational terrain called a “Braswell Index,” to

construct mission game boards. The Braswell Index creates

a network of mobility corridors around obstacles. The

index includes characteristics that outline combat

multipliers for attacking and defending forces in each

mobility corridor (Schlabach, 2009, pp. 8-9). An example

of a Braswell Index can be seen in Figure 15.

 38

Figure 15. An example of a Braswell Index. The lines
“bisect the Mobility Corridors between the obstacles”

(From Schlabach, 2008, p. 7)

The game boards created by the MCOO-Maker contain

enough terrain data to enable environmental combat

multipliers, but can still be loaded into the computer’s

basic memory. This allows for faster battle simulations

than if the game board was loaded from the computer’s hard

drive (Schlabach, 2009, p. 9).

The BBE game boards also contain information that

guides the movement of offensive units and the placement of

defensive units. For the attacking units, the game board

has a set of Virtual (V) Lanes that are analogous to AAs on

a typical MCOO. V-Lanes are a series of routes across the

game board extend from a unit’s start point to its

objective. An example of a set of V-Lanes can be seen in

Figure 16. V-Lanes are logically parallel to each other

and act as the guide for offensive movement in the BBE

simulations. Additionally, V-Lanes contain information

 39

that indicates the type of attacking formations they can

support (Schlabach, 2009, p. 10).

For defensive units the game board identifies lines of

defensible terrain (LDT). LDTs are made from “neighboring

mobility corridors upon which a coherent defense can be

based” (Schlabach, 2009, p. 10). LDTs usually intersect V-

Lanes and act as placement points for defending units. An

example of an LDT can be seen in Figure 17.

Figure 16. BBE game board with several V-Lanes
highlighted. The mission start point and objective

have also been annotated.

 40

Figure 17. BBE game board with a LDT circled. Note how it

intersects the V-Lanes seen in Figure 16.

2. Order of Battle

The next elements entered into the BBE are the

friendly and enemy orders of battle. In the yellow sticky

drill, these would be the post-it notes that are moved

across the MCOO. Data to build these units would be

collected during the IPB process in mission analysis. Like

the Terrain loader, the BBE relies on an external program,

the BBE Weapons Assessment and Calculation Tool (B-WACT),

to provide weapon data. Seen in Figure 18, the B-WACT

 41

allows mission planners to “develop a basic relative combat

power for individual weapons and weapon systems that

aggregate weapons” (Schlabach, 2009, p. 11). The combat

power ratings are based on the “Quantitative Judgement

Method of Analysis” (QJMA) developed by Colonel Trevor N.

Dupuy (Schlabach, 2009, p. 11). A list of these weapons

can be loaded in the Weapons and Unit Types tab in the

Mission Building menu seen in Figure 19. Mission planners

can also group weapon systems together to form both

friendly and enemy units in this tab.

Figure 18. The B-WACT is used to build units for use in
the BBE

 42

Figure 19. The Weapons and Units Types tab. In this menu,

mission planners can load B-WACT weapons lists and
build units

Once unit types have been built, the mission planner

can begin to construct orders of battle (OB) for both the

friendly and enemy forces. Both sets of forces have their

own respective OB building tabs in the Mission Building

menu shown in Figure 20 and 21. In these tabs, units are

grouped together to form subordinate commands that are then

used in COA construction. Previous OBs can also be loaded,

or current OBs saved, for later use. Each subordinate is

given a Base Power score, which is determined by the basic

combat powers of each of its units.

 43

Figure 20. The Enemy OB tab. The base power of the
subordinate command is circled in red

Figure 21. The Friendly OB tab. The subordinate command

tabs are circled in red

 44

3. Postures and Morale

The final inputs on the Mission Building menu deal

with the postures and morale of the respective forces and

act as combat multipliers in the battle simulation.

Mission developers can adjust the strength and overall

morale of forces to reflect conditions as needed. Morale

can be set to five different levels ranging from

“Excellent” to “Panic.” Force postures are set based on a

list that includes hasty attack, prepared attack, fortified

defense, hasty defense, prepared defense, delay/withdraw,

and movement to contact. Each of these settings

“influence[s] the attrition calculations [in the

simulation]” (Schlabach, 2009, p. 12). Additionally, the

mission planner can set superiorities for each side in

Intelligence, Surveillance, and Reconnaissance (ISR),

Command and Control (C2), and air power. These

superiorities represent advantages that the respective

forces may have in communication, intelligence, and control

of the operational air space. The superiorities settings

act as multipliers that affect unit attrition calculations

in the simulations combat model. Figure 22 shows the

posture, morale, and superiorities controls.

Figure 22. Controls for force postures, morale and
superiorities

 45

C. COA CREATION

After the terrain, orders of battle, and postures have

been set, a mission planner can begin creating COAs. Both

ECOAs and FCOAs have their own respective creation

interfaces, shown in Figures 23 and 25. In these examples

the FCOA creation menu contains offensive COA variables,

while the ECOA has defensive variables (the attacker-

defender roles can be reversed if needed). The top part of

both menus contains a list of prospective COAs that have

already been created, along with a short description of the

COA. Each ECOA created also has a user-provided value for

the relative probability that the enemy will use that

particular COA. The BBE also provides a visualization of

the COA setting, as seen in Figures 24 and 26.

Figure 23. The FCOA creation menu with offensive COA
variables

 46

COA variables are used to construct the bit strings

that drive the simulation in wargaming, and can be

manipulated in the genetic algorithm. There are three

types of COA variables in both offensive and defensive

COAs. The first type is total unit variables. These

variables are found on the left side of the COA creation

menu and affect all units. Total unit variables determine

lanes of movement or responsibility, as well as formations

and ground support priority. The next type is subordinate

unit variables. These variables are found in the middle of

the menu and are set for each individual unit. The final

type of COA variable deals with Task Organizable (TO)

units. TO units can be assigned to any of the subordinate

commands in the order of battle. The assignment of TO

units is done on the right side of the COA creation menu.

While offensive and defensive COAs share many of the same

traits, there are some significant differences.

 47

Figure 24. Graphical visualization of the FCOA displayed

in Figure 23. Since this is an offensive COA, units
are assigned V-Lanes to define their movement. The
exclamation points indicate priority for GS. The
values underneath the unit names display the units’
percentage of general support, the units’ core combat
power and the combat power of any subordinate forces
Task Organized (TO) to the unit. Each unit’s total

combat power is displayed in bold

1. Offensive COA Variables

The Offensive COA variable set defines the movement of

the attacking force across the game board. The Invention

Disclosure document by Schlabach and Nielsen defines the

following variables.

 48

 Number Abreast (Num abreast)—The number of

columns used by an attacking force. This value

is dependent on available V-Lanes and subordinate

units.

 Unit Formation—Outlines the position of each unit

based on the Number Abreast and number of

subordinate units. For example, a value of (0,

1, 1) indicates that there are three subordinate

units in two columns. The first unit is in

column “0,” while the second and third units are

in column “1.”

 Unit Boundaries—Defines the V-Lane boundaries of

the unit columns. In Figure 23, a three abreast

formation is given the boundaries (2, 5). This

means that the first column will advance along V-

Lanes 0-2, the second column will use V-Lanes 3-

5, and the third column will use the remaining V-

Lanes. The illustration of this is seen in

Figure 24.

 Unit Assignments—Assigns Subordinate units to

particular formation slots. The numbers

correspond to the Subordinate selection panel in

the middle of the FCOA creation menu. A value of

(2, 3, 1) would assign the second subordinate to

the first formation slot, the third subordinate

to the second slot, and the first subordinate to

the third slot.

 49

 Priority of General Support (GS)—Determines the

priority of GS by formation slot. In the

visualization of the COA, higher priority is

indicated by increased exclamation points as seen

in Figure 24.

 Severity of GS by Formation Slot—Shows the

percentage of GS allocated to each formation

slot.

 Left and Right Boundaries (L. Bndry, R.Bndry)—

These controls restrict subordinate units’

movements to particular V-Lanes. In Figure 25,

the unit in the second column is given wider left

and right boundaries than the other units.

 Upon Penetration—Describes unit actions after it

penetrates an enemy defensive position. This

variable is not completely implemented in the

battle simulations but is expected in subsequent

versions of the BBE.

 At Objective (OBJ)—Describes unit actions once it

reaches its objective. This variable is not

completely implemented in the battle simulations

but is expected in subsequent versions of the

BBE.

 Stutter Start—Sets a delay for initial unit

movement.

 50

 Bypass Criteria—Determine the level of defensive

force that will be bypassed once the LDT has been

penetrated. Ranges go from squad (SQD) to

battalion (BN).

 Withdrawal Criteria—Indicates the unit strength

level at which the unit will withdraw from

combat. Expressed as a percentage of overall

strength.

 Follow on Support (F&S) or Reserve—Used only if

the subordinate unit is in a reserve slot in the

formation.

 Reserve Lane—Determines the V-Lane for a reserve

unit.

 Reserve Threshold—Determines the subordinate

strength level at which it will employ its

reserve unit.

 Reserve Guidance—Directs the action of the

reserve unit. Reserve units can stay in assigned

V-Lanes or be set to attack either the “best-

dent,” “best-hole” (penetration of defense), or

“first-hole.” This variable is not completely

implemented in the battle simulations.

 Reserve Lag Distance—This variable controls the

distance that a subordinate unit assigned a

reserve task will stay behind the unit it is

supporting. (Schlabach, 2009, p 18-20)

 51

2. Defensive COA Variables

The defensive COA menu has several variables that are

the same as in the offensive COA menu. Number abreast,

formation assignments, boundaries, GS priority and

severity, and withdrawal criteria are also in the defensive

COA variable set. Unlike offensive COA creation, the

defensive COA set focuses on unit placement, not unit

movement. The following variables are exclusive to the

defensive COA menu.

 Anchor LDT—Defines the LDT that will be defended.

Defensive units will be placed on the mobility

corridors that make up the LDT. In Figure 26,

the anchor LDT is LDT-5. Units are responsible

for defending sections of V-Lanes as they

intersect LDT-5.

 Anchor Line Setback—Sets the distance a unit will

move back from the anchor LDT.

 Reinforce Policy—Determines which neighboring

units a non-attacked subordinate will reinforce.

 Delay or Reserve—Determines if a non-main line

defense unit is set in a Delay or Reserve

mission. In the example COA in Figure 25 and

Figure 26, D Company is set as a reserve unit.

 Delay Depth—Distance behind the anchor LDT for a

unit ordered to delay.

 Reserve Lag Distance—Distance behind the anchor

LDT for a unit set to reserve. (Schlabach, 2009,

pp. 15-17)

 52

Figure 25. The ECOA creation menu with defensive COA

variables

 53

Figure 26. Graphical visualization of the ECOA displayed

in Figure 25. In this defensive COA, units are
positioned at LDT-5. Each unit is given a range of
V-Lanes that they are responsible for blocking. D
Company is set to act as reserves for B Company

 54

D. WARGAMING

Once a suitable set of ECOAs and FCOAs has been

constructed, the mission planner can move on to the Wargame

menu seen in Figure 27. From this menu, the mission

planner can set the desired end state, visualize a sample

battle between a FCOA and an ECOA, and obtain evaluation

scores for the FCOA set.

Figure 27. The Wargame menu

1. Desired End State

The desired end state (DES) in the BBE reflects the

commander’s intent that is created during the MDMP.

Commanders can use the DES menu, seen in Figure 28, to

“select criteria that reflect how he [or she] would like

the battlefield to ‘look’ at the end of a successful

mission” (Schlabach, 2009, p. 28).

 55

Figure 28. The Desired End State menu

End state criteria can include total mission time,

overall force levels, unit force levels, and unit strength

on particular mobility corridors. The current list of

selected criteria is displayed in the top left of the DES

menu. Each individual criterion is given a weight factor

that reflects its relative importance to the commander.

2. Battle Visualization

The BBE also allows planners to visualize sample COA

engagements as seen in Figure 29. Battle visualization

helps the mission planner see how units are moving across

the V-Lanes and confirms desired placement of defensive

forces. Planners can also track a unit’s status during a

particular COA.

 56

Figure 29. The Battle visualization screen. Controls at
the bottom of the screen allow the user to advance
the simulation. Unit information and MC data are

displayed to the right of the MCOO

3. COA Evaluations

The BBE evaluates battles using a modified Lanchester

equation with modified Dupuy QJMA coefficients (Schlabach,

2007, p. 3). Combat occurs anytime a defensive unit and an

offensive unit enter the same mobility corridor. Attrition

rates are determined by the combat strength of each unit,

terrain multipliers in the mobility corridor, and the

mission postures and morale set earlier. Battle outcomes

are deterministic, so the same FCOA and ECOA battles will

produce the same result in each battle.

Each FCOA is evaluated against the entire set of ECOAs

using the desired end-state variables, producing an

evaluation matrix seen in Figure 30. The individual scores

of the FCOA against each ECOA are weighted according to the

 57

user-assigned probability that the enemy will use the ECOA.

The scores are then summed to produce the FCOA’s total

score.

Figure 30. An FCOA evaluation matrix

E. THE BBE GENETIC ALGORITHM

As mentioned earlier, each FCOA maps to a bit string

that represents values in the COA variable set. The FCOA’s

score is the result of the fitness function provided by the

desired end-state variables. Since the BBE is able to

generate a population of solution strings, and has a way to

evaluate each string, it can run a genetic algorithm to

find FCOAs that maximize COA scores. The BBE genetic

algorithm is accessed from the bottom left corner of the

Wargame menu.

1. Results and Analysis

The results of the genetic algorithm are presented in

the BBE Search Results window, seen in Figure 31. The

window displays the current population of solution strings

with a shorthand description that includes the COA

 58

formation and boundaries. Controls for viewing filters are

positioned on the right side of the menu. Additionally,

convergence data and the average population score are shown

on the left side of the menu. The convergence plot can

display the best, worst, and average score in the

population.

Figure 31. The BBE Search Results menu

Mission planners can also choose to display the “cream

of the crop,” the highest-scoring solutions found

throughout all of the generations, by pressing the button

at the bottom of the menu. This display is useful because

it includes FCOAs that may have been lost in previous

generations. The Cream of the Crop display is shown in

Figure 32.

 59

Figure 32. The Cream of the Crop display

FCOAs that look promising to the mission planner can

be added to the candidate list in the Wargame menu by

pressing the “Promote selection to MDMP” button, which is

present in both the search results and Cream of the Crop

displays.

The search results window also has links to three

analytical windows for further COA evaluation. Shown in

Figure 33, the Risk Analysis window evaluates how changes

to the ECOA set affect the scores of FCOAs created by the

genetic algorithm. The Evaluation Criteria Analysis

window, seen in Figure 34, is similar to the Risk Analysis

window, except instead of using changes to the ECOA set, it

focuses on the desired end-state variable. Finally, the

Pareto Analysis window, in Figure 35, allows mission

planners to test trade-offs in both the ECOA set and

evaluation criteria to find optimal FCOAs to promote to the

candidate set.

 60

Figure 33. The Risk Analysis window

Figure 34. The Evaluation Criteria Analysis window

 61

Figure 35. The Pareto Analysis window

2. Genetic Algorithm Parameters

The BBE also offers some advanced controls over the

implementation of the genetic algorithm. The genetic

algorithm search parameters menu is shown in Figure 36.

 62

Figure 36. The Genetic Algorithm Search Parameters menu.
Currently, only items in the on the left side are

implemented

Mission planners have control over the following

parameters:

 Population Size—Set in increments ranging from 200

to 2000.

 Number of Generations—Set in increments ranging

from 25 to 400.

 Selection Technique—Set to either roulette wheel

selection or two-, three=, or four-way tournament.

 Crossover Technique—Set to either one or two-point

crossover. The probability variable represents the

chance that two strings selected for mating will

actually breed. It can be set from 0.4 to a

maximum of 0.9.

 63

 Mutation Rate—Set in increments ranging from 0.001

to a maximum of 0.04.

 Replacement Policy—Set to full Darwin, Half and

Half, and full parricide. In full Darwin, only the

highest-scoring strings are selected for the next

generation. Half and Half takes a mix of the best

parent and best child strings. Full parricide

takes only child strings into the next generation.

 Seed Policy—Soft seeding puts FCOA candidates from

the Wargame menu list into the first generation.

Hard seeding puts FCOA candidates in each

generation. Seeding cannot be done if overlapping

generations is enabled.

 Overlapping Generations—Enables overlapping generations.

This is used to implement De Jong’s crowding model.

 Generation Gap—Sets the generation gap, if

overlapping generations is enabled.

 Crowding Factor—Sets the crowding factor, if

overlapping generations is enabled.

F. SUMMARY

The BBE provides a powerful tool to enable the

consolidation of several IPB products and encoding of COAs

as bit strings. Its genetic algorithm can be used to

discover new FCOAs and can be tailored using an advanced

set of parameters. The next chapter outlines the method to

test the effects these parameters have over the genetic

algorithm and the search results.

 64

THIS PAGE INTENTIONALLY LEFT BLANK

 65

IV. METHODS

A. INTRODUCTION

This chapter outlines the methods that were used to

test the effects that certain parameter settings have on

the BBE’s genetic algorithm. The experiment consisted of

multiple searches for FCOAs using different configurations

of the genetic algorithm. In order to provide a constant

search space, a single battle scenario was used in all BBE

search runs.

B. THE SCENARIO

The test scenario was a modified version of a battle

provided by Eric Nielsen and Jerry Schlabach. The battle

simulates a friendly force of two combined arms battalions

and a Reconnaissance, Surveillance, and Target Acquisition

(RTSA) squadron engaging an enemy force of infantry

fighting vehicles and tanks. Full orders of battle are

provided in Appendix A.

The friendly and enemy forces were both given full

strength and good morale, as seen in Figure 37. The

friendly forces were conducting a hasty attack, while the

enemy forces prepared a hasty defense. The time slice for

the simulation was set to 18 minutes. Neither side was

given any ISR, C2, or air superiorities.

 66

Figure 37. Battle variables for the test scenario

There were no candidate FCOAs created for wargaming.

The scenario did include five ECOA nominees. The

visualizations for these ECOAs are included in Appendix A.

COA evaluation criteria were kept minimal. FCOA were

evaluated on overall attacker and defender remaining

strength at the end of the battle. Additionally, FCOAs

were rated on friendly strength levels at the end of the

respective V-Lanes. The list of criteria is shown in

Figure 38.

 67

Figure 38. The COA evaluation criteria. Note “sub-MC”
criteria are for the mobility corridors at the end of

the various V-Lanes

C. PARAMETERS TESTED

In total, seventy-six search runs were completed with

various configurations of the genetic algorithm parameters.

All searches were completed with a population size of 400

and run for 50 generations. Seeding was not used in any of

the searches. Each configuration was done once with one-

point crossover, and once with two-point crossover.

1. Analysis of Impact of Selection Technique

The first 48 searches were completed in four blocks

based on selection technique. Each selection technique was

given twelve searches with varying parameter configurations

for crossover, breeding probability and mutation (shown in

 68

Table 2). In these initial searches, replacement policy

was set to full Darwin. Overlapping populations were not

enabled.

Run # Crossover Probability Mutation
1 One‐Point 0.7 0.005
2 One‐Point 0.7 0.005
3 Two‐Point 0.7 0.005
4 Two‐Point 0.7 0.005
5 One‐Point 0.4 0.005
6 Two‐Point 0.4 0.005
7 One‐Point 0.9 0.005
8 Two‐Point 0.9 0.005
9 One‐Point 0.9 0.005
10 Two‐Point 0.9 0.005
11 One‐Point 0.7 0.01
12 Two‐Point 0.7 0.01

Table 2. The configuration of parameters for crossover,
breeding probability and mutation used to test

selection techniques.

2. Analysis of Impact of Replacement Policies

After testing each of the different selection

techniques, the next sixteen runs were configured to test

the replacement policies of half Darwin and full parricide.

For these runs breeding probability and mutation were fixed

at 0.7 and 0.005. Each replacement policy was run with

each of the four selection techniques twice, once each for

both one and two-point crossover.

3. Analysis of the Crowding Model

The final twelve runs enabled overlapping generations,

and tested the implementation of De Jong’s crowding model.

All searches were conducted using full Darwin replacement.

Breeding probability and mutation rate were again fixed at

0.7 and 0.005, respectively. The crowding factor was fixed

 69

at three for all runs. Half of the runs were done with a

generation gap of 0.5, the other half used 0.9.

D. DATA COLLECTION

The average FCOA score and the overall best FCOA score

in the final generation were recorded for each search run.

The convergence charts, showing the best, worst, and

average scores for each generation, were recorded through

screen captures. Additionally, the diversity in FCOAs in

the final generation was examined. This was done by

examining number abreast and formation boundaries displayed

in the Search results window. Populations that were

composed of FCOAs that all used the same number abreast,

and had the same formation boundaries, were considered less

diverse than those that had a variety of number abreast and

varying formation boundaries.

E. SUMMARY

This chapter reviewed the experiment setup to test

specific genetic algorithm parameters. The following

chapter reviews the results of the search runs.

 70

THIS PAGE INTENTIONALLY LEFT BLANK

 71

V. RESULTS AND ANALYSIS

A. INTRODUCTION

This chapter presents the results of the BBE search

runs and analyzes the data according to the different

genetic algorithm parameters. The configurations and

outcomes for the entire set of search runs are presented in

Appendix B.

B. GENERAL STATISTICS

The FCOAs that used the three-abreast formation

typically had higher evaluation scores and made up most of

the final generation in a majority of search runs. FCOA

using the one-abreast formation did not score well, and

were almost never seen in any of the final generations.

The maximum FCOA score found by any of the searches

was 1539.112, using three-way tournament selection, 0.7 for

breeding probability, 0.005 mutation, full Darwin

replacement, and a non-overlapping population. The minimum

score was 1450.9069. It was found using roulette wheel

selection, one-point crossover, 0.7 breeding probability,

0.005 mutation, and full parricide replacement. The mean

of the “best” string found for all searches was 1507.4088,

with a standard deviation of 21.288. It should be noted

that multiple search configurations returned “best” strings

with the score 1524.7787. It is possible that these

configurations found either the same FCOA, or a series of

similar FCOAs. Since some features were not implemented in

the version of the BBE used for testing, FCOAs that

differed only in those variables produced the same

 72

evaluation score. With regard to the average score in the

final generation for each search configuration, the mean

value was 1463.8212 with a standard deviation of 69.202.

C. SELECTION TECHNIQUE

The selection technique parameter did not appear to

greatly affect the outputs of the search runs. Table 3

shows the best FCOA found and the mean final generation

average score for each of the selection techniques. These

comparisons do not include runs using overlapping

generations, which were not enabled for roulette wheel

selection in the BBE version used for testing.

Selection Technique
Best FCOA Score

Found
Mean Final Generation

Average Score

Roulette Wheel 1524.7787 1470.622781

Two Way
Tournament 1535.9318 1466.11395

Three Way
Tournament 1539.1112 1462.831831

Four Way
Tournament 1524.9167 1466.100356

Table 3. Comparisons of selection technique performance

T-test comparisons, with a significance level of 0.05

of the mean final generation average scores, did not show

any differences among the selection techniques.

D. CROSSOVER

There were also no apparent differences in outcomes

between one- and two-point crossover. Table 4 displays the

best FCOA found and mean final generation average score for

both of the crossover styles.

 73

Crossover
Best FCOA Score

Found
Mean Final Generation

Average Score

One‐point 1539.1112 1461.881234

Two‐point 1538.9307 1464.988335

Table 4. Comparisons for crossover technique

E. REPLACEMENT POLICY

The selection of replacement policy had the greatest

affect on the genetic algorithm search results of any of

the tested parameters. Comparisons of replacement policy

were made using search runs with 0.7 breeding probability,

0.005 mutation rate, and non-overlapping populations. Full

parricide performed significantly worse than either half or

full Darwin, as seen in Table 5. However, full parricide

did produce the most diverse final populations. Full

parricide runs were the only searches to have FCOAs that

used one-abreast formations present in the final

generation.

Replacement Policy
Best FCOA Score

Found
Mean Final Generation Average

Score

Full Darwin 1539.1112 1495.095713

Half Darwin 1524.7787 1489.7632

Full Parricide 1509.8441 1280.414438

Table 5. Comparisons of replacement polices

Figure 39 shows the difference in convergence charts

for a typical search run using full Darwin, half Darwin,

and full parricide replacement policies. The full Darwin

run shows steady improvements to the worst and average

scores through each generation. The half Darwin run shows

similar improvements, although not to the same degree as

 74

the full Darwin run. The full parricide run shows a slight

improvement in population average, but erratic behavior in

the worst FCOA score.

Figure 39. Convergence plots from three search runs. The

first is from a full Darwin search, the second a half
Darwin, and the third a full parricide. In each

plot, the black represents the best FCOA score, grey
is the average score, and yellow is the worst score

Figure 39 also illustrates one of the key differences

between full and half Darwin searches. Searches using full

Darwin tended to converge rather quickly, with later

generations composed of essentially the same FCOA. Half

Darwin searches would converge slower than those using full

Darwin, maintaining a greater variety of FCOAs in each

generation.

F. THE CROWDING MODEL

The implementation of De Jong’s crowding model showed

improved diversity in the final generation, with a reduced

mean final generation average score than similar searches

that did not use overlapping generations. The reduction in

mean final generation average score was most likely due to

the increased diversity, which would allow lower scoring

FCOAs to remain in the general population longer.

 75

Increasing the generation gap from 0.5 to 0.9 reduced the

diversity, and made the searches behave more like a typical

full Darwin search.

G. SUMMARY

Of the three main parameters tested (crossover,

selection technique, and replacement policy) only changes

to replacement policy showed any drastic effect on the

performance of the genetic algorithm. Searches using full

and half Darwin significantly outperformed full parricide

searches with regards to best FCOA found and mean final

generation average score. Additionally, the crowding model

in the BBE did improve the diversity in the final

generation. Although this may have lowered the mean final

generation average score for searches using the crowding

model, it did provide the user with a greater variety of

distinct FCOAs to examine.

 76

THIS PAGE INTENTIONALLY LEFT BLANK

 77

VI. CONCLUSIONS AND RECOMMENDATIONS

A. INTRODUCTION

This thesis provided a basic investigation of the

genetic algorithm implementation in the BBE. The

fundamentals of the MDMP and genetic algorithms were

presented as a foundation for the study. In the experiment,

various parameters of the BBE’s genetic algorithm were tested

through a variety of searches over a fixed battle scenario.

This chapter draws conclusions based on the research and the

results of the experiments. It also recommends possible

improvements to the BBE and outlines areas for future

research.

B. CONCLUSIONS

This thesis proposed research questions in three main

areas dealing with the BBE’s genetic algorithm. The first

area dealt with the number of FCOAs created and the ability

to separate tactically-desirable FCOAs from those that are

not logical. The BBE was able to generate and evaluate

thousands of FCOAs in search runs that typically lasted

fifteen minutes for the conditions modeled. FCOAs could be

sorted and examined efficiently using the tools provided in

the search results window. While the actual “usefulness”

of created COAs was not tested in the experiment, each

search run produced over 400 possible COAs for examination.

In addition, the BBE provided features such as the Cream of

the Crop display and analysis tools to conduct further

investigation of the created COAs.

 78

The second area of research questions investigated how

changes to the genetic algorithm parameters affected the

FCOAs generated and the diversity and convergence of the

BBE search results. The experiment identified replacement

policy as the parameter having the greatest effect on

search results and population diversity. Full and half

Darwin searches provided the highest scoring FCOA

populations. Additionally, using De Jong’s crowding model,

the BBE could increase the diversity in searches, without

sacrificing much in convergence behavior.

The final research area dealt with the background

information the BBE provided to its users regarding genetic

algorithm parameter settings. Mission planners should be

given some control over the genetic algorithm parameters to

tailor searches to fit their requirements. Changes to

mission variables and evaluation criteria change the

possible solution space for the FCOA search. Since the

solution space can change based on the input conditions,

there is no one constant optimal setting for the genetic

algorithm parameters. While the experiment did not test

multiple mission variables or different evaluation

criteria, the research for this thesis highlighted the

importance of understanding the functions of the genetic

algorithm parameters. Giving the mission planners more

information regarding the parameter settings is a logical

way to improve their use of the BBE.

C. IMPROVEMENTS TO THE BBE

The following is a list of possible improvements to

the BBE interface:

 79

 Explanations of the genetic algorithm parameters

and their effects in the BBE would be useful to

some users. For example, the Pareto analysis

window contains a link to a Wikipedia entry

explaining how the analysis works. A similar

link or help screen could assist users who are

not familiar with how genetic algorithms work.

 An audio or visual prompt that a search has been

completed would help cue the user. Since the BBE

search can run in the background, mission

planners can use other features of the BBE, or

even other programs, while the search is being

conducted. It would be useful to know when the

search is finished instead of having to

constantly check the search results screen.

 The Pareto Analysis, Risk Analysis, and

Evaluation Criteria Analysis functions are

currently only available to FCOAs found in the

genetic algorithm search. It would be useful to

extend this functionality to FCOAs in the

candidate list.

 The ability to sort FCOAs by score in the search

results window would allow users more options for

reviewing the outcome of the genetic algorithm.

 The ability to graphically display COAs, seen in

the COA construction windows, would also be

useful in the search results window. This would

allow users to compare FCOAs visually without

necessarily promoting them to the candidate list.

 80

D. FUTURE WORK

Possible future research topics regarding the BBE

include:

 Verification and validation of the underlying

combat model of the BBE.

 Further investigation of the genetic algorithm

parameters with support from the Naval

Postgraduate School Simulation Experiments and

Efficient Designs (SEED) Center. Using design

strategies such as Nearly Orthogonal Latin

Hypercube would help to identify interactions

between the genetic algorithm parameters.

 Research into how mission parameters and

evaluation criteria affect the genetic algorithm

performance.

 The Joint Professional Military Education (JPME)

courses at the Naval Postgraduate School require

students to use the MDMP to develop COAs as part

of a class project. It would be interesting to

develop a scenario that would allow students in

the JPME classes to use the BBE as part of their

class project. Student feedback would be

beneficial to improving the functionality of the

BBE.

 User studies on the layout of the graphical user

interface (GUI) for the various BBE windows.

 User studies to determine the operational benefit

of BBE use in development and evaluation of COAs

 81

E. SUMMARY

The BBE is an interesting tool that can potentially be

of great asset to mission planners. The relatively simple

user interface of the BBE aids planners in the construction

and wargaming of multiple COAs. Additionally, the BBE

provides the computational mechanisms to automatically

generate and evaluate thousands of possible COAs through

its genetic algorithm. Further study of the tool will

hopefully demonstrate its viability and value to assisting

mission planners in dealing with the complexity of the

battlespace environment.

 82

THIS PAGE INTENTIONALLY LEFT BLANK

 83

APPENDIX A. THE GENETIC ALGORITHM TEST SCENARIO—
ORDERS OF BATTLE AND ECOAS

A INTRODUCTION

This section contains screen captures showing the

orders of battle and ECOA visualizations for the test

scenario.

B. ORDERS OF BATTLE

1. Friendly Order of Battle

Figure 40. General Support Units. The first column
indicates if a unit is Task Organizable. The fourth

column shows a unit’s Base Combat Power (BCP)

 84

Figure 41. 1st Combined Arms Battalion

Figure 42. 2nd Combined Arms Battalion

 85

Figure 43. Reconnaissance, Surveillance, and Target

Acquisition (RTSA)Squadron

2. Enemy Order of Battle

Figure 44. General Support Units

 86

Figure 45. Alpha Company was composed of BMP-2 infantry

fighting vehicles

Figure 46. Bravo Company

 87

Figure 47. Charlie Company

Figure 48. Delta Company was composed of T-80U tank

platoons

 88

C. ECOAS

Figure 49. Balanced defense with Tank Company in reserve

 89

Figure 50. Balanced defense with tank platoons integrated

into Alpha, Delta, and Charlie Companies

 90

Figure 51. Forward defense with tank platoons kept in

reserve

 91

Figure 52. Strong right defense with tank platoon

supporting Alpha Company

 92

Figure 53. Strong left defense with Delta Company in

reserve of Charlie Company

 93

APPENDIX B. BBE RUN RESULTS

Run #
Selection
Technique Crossover Probability Mutation Replacement Seed Overlapping

Generation
Gap Niching Best Average

1 Roulette One‐Point 0.7 0.005 Full Darwin Unseeded NA NA NA 1524.779 1508.632

2 Roulette One‐Point 0.7 0.005 Full Darwin Unseeded NA NA NA 1471.941 1446.781

3 Roulette Two‐Point 0.7 0.005 Full Darwin Unseeded NA NA NA 1523.655 1511.105

4 Roulette Two‐Point 0.7 0.005 Full Darwin Unseeded NA NA NA 1523.901 1517.003

5 Roulette One‐Point 0.4 0.005 Full Darwin Unseeded NA NA NA 1480.474 1450.219

6 Roulette Two‐Point 0.4 0.005 Full Darwin Unseeded NA NA NA 1502.903 1471.299

7 Roulette One‐Point 0.9 0.005 Full Darwin Unseeded NA NA NA 1514.067 1504.44

8 Roulette Two‐Point 0.9 0.005 Full Darwin Unseeded NA NA NA 1524.779 1517.748

9 Roulette One‐Point 0.9 0.005 Full Darwin Unseeded NA NA NA 1524.779 1522.497

10 Roulette Two‐Point 0.9 0.005 Full Darwin Unseeded NA NA NA 1524.779 1521.075

11 Roulette One‐Point 0.7 0.01 Full Darwin Unseeded NA NA NA 1517.954 1489.552

12 Roulette Two‐Point 0.7 0.01 Full Darwin Unseeded NA NA NA 1524.779 1502.091

Run #
Selection
Technique Crossover Probability Mutation Replacement Seed Overlapping

Generation
Gap Niching Best Average

13 2‐Way One‐Point 0.7 0.005 Full Darwin Unseeded NA NA NA 1522.51 1510.085

14 2‐Way One‐Point 0.7 0.005 Full Darwin Unseeded NA NA NA 1524.779 1508.325

15 2‐Way Two‐Point 0.7 0.005 Full Darwin Unseeded NA NA NA 1501.354 1483.757

16 2‐Way Two‐Point 0.7 0.005 Full Darwin Unseeded NA NA NA 1524.779 1510.205

17 2‐Way One‐Point 0.4 0.005 Full Darwin Unseeded NA NA NA 1467.743 1434.7

18 2‐Way Two‐Point 0.4 0.005 Full Darwin Unseeded NA NA NA 1482.074 1453.185

19 2‐Way One‐Point 0.9 0.005 Full Darwin Unseeded NA NA NA 1535.932 1505.335

20 2‐Way Two‐Point 0.9 0.005 Full Darwin Unseeded NA NA NA 1514.067 1503.611

21 2‐Way One‐Point 0.9 0.005 Full Darwin Unseeded NA NA NA 1524.779 1524.428

 94

22 2‐Way Two‐Point 0.9 0.005 Full Darwin Unseeded NA NA NA 1502.526 1493.64

23 2‐Way One‐Point 0.7 0.01 Full Darwin Unseeded NA NA NA 1517.177 1486.433

24 2‐Way Two‐Point 0.7 0.01 Full Darwin Unseeded NA NA NA 1523.655 1503.077

Run #
Selection
Technique Crossover Probability Mutation Replacement Seed Overlapping

Generation
Gap Niching Best Average

25 3‐Way One‐Point 0.7 0.005 Full Darwin Unseeded NA NA NA 1507.47 1476.639

26 3‐Way One‐Point 0.7 0.005 Full Darwin Unseeded NA NA NA 1539.111 1513.576

27 3‐Way Two‐Point 0.7 0.005 Full Darwin Unseeded NA NA NA 1538.931 1515.742

28 3‐Way Two‐Point 0.7 0.005 Full Darwin Unseeded NA NA NA 1507.471 1485.641

29 3‐Way One‐Point 0.4 0.005 Full Darwin Unseeded NA NA NA 1507.963 1444.083

30 3‐Way Two‐Point 0.4 0.005 Full Darwin Unseeded NA NA NA 1504.385 1444.028

31 3‐Way One‐Point 0.9 0.005 Full Darwin Unseeded NA NA NA 1512.907 1506.041

32 3‐Way Two‐Point 0.9 0.005 Full Darwin Unseeded NA NA NA 1523.655 1514.737

33 3‐Way One‐Point 0.9 0.005 Full Darwin Unseeded NA NA NA 1535.932 1509.863

34 3‐Way Two‐Point 0.9 0.005 Full Darwin Unseeded NA NA NA 1524.779 1511.693

35 3‐Way One‐Point 0.7 0.01 Full Darwin Unseeded NA NA NA 1500.668 1488.765

36 3‐Way Two‐Point 0.7 0.01 Full Darwin Unseeded NA NA NA 1520.194 1490.212

Run #
Selection
Technique Crossover Probability Mutation Replacement Seed Overlapping

Generation
Gap Niching Best Average

37 4‐Way One‐Point 0.7 0.005 Full Darwin Unseeded NA NA NA 1514.067 1500.617

38 4‐Way One‐Point 0.7 0.005 Full Darwin Unseeded NA NA NA 1487.596 1471.175

39 4‐Way Two‐Point 0.7 0.005 Full Darwin Unseeded NA NA NA 1521.606 1492.387

40 4‐Way Two‐Point 0.7 0.005 Full Darwin Unseeded NA NA NA 1524.917 1469.861

41 4‐Way One‐Point 0.4 0.005 Full Darwin Unseeded NA NA NA 1497.272 1462.5

42 4‐Way Two‐Point 0.4 0.005 Full Darwin Unseeded NA NA NA 1520.513 1476.664

43 4‐Way One‐Point 0.9 0.005 Full Darwin Unseeded NA NA NA 1524.779 1521.538

44 4‐Way Two‐Point 0.9 0.005 Full Darwin Unseeded NA NA NA 1514.067 1496.585

45 4‐Way One‐Point 0.9 0.005 Full Darwin Unseeded NA NA NA 1524.779 1514.853

46 4‐Way Two‐Point 0.9 0.005 Full Darwin Unseeded NA NA NA 1518.275 1511.849

 95

47 4‐Way One‐Point 0.7 0.01 Full Darwin Unseeded NA NA NA 1522.51 1500.408

48 4‐Way Two‐Point 0.7 0.01 Full Darwin Unseeded NA NA NA 1524.121 1490.603

Run #
Selection
Technique Crossover Probability Mutation Replacement Seed Overlapping

Generation
Gap Niching Best Average

49 Roulette Two‐Point 0.7 0.005 Half Darwin Unseeded NA NA NA 1523.901 1509.123

50 2‐Way Two‐Point 0.7 0.005 Half Darwin Unseeded NA NA NA 1512.723 1497.064

51 3‐Way Two‐Point 0.7 0.005 Half Darwin Unseeded NA NA NA 1511.797 1465.825

52 4‐Way Two‐Point 0.7 0.005 Half Darwin Unseeded NA NA NA 1524.779 1516.208

53 Roulette Two‐Point 0.7 0.005 Full Parricide Unseeded NA NA NA 1467.653 1298.411

54 2‐Way Two‐Point 0.7 0.005 Full Parricide Unseeded NA NA NA 1464.273 1290.42

55 3‐Way Two‐Point 0.7 0.005 Full Parricide Unseeded NA NA NA 1464.301 1293.548

56 4‐Way Two‐Point 0.7 0.005 Full Parricide Unseeded NA NA NA 1475.908 1263.943

57 Roulette One‐Point 0.7 0.005 Half Darwin Unseeded NA NA NA 1520.348 1491.291

58 2‐Way One‐Point 0.7 0.005 Half Darwin Unseeded NA NA NA 1504.472 1475.117

59 3‐Way One‐Point 0.7 0.005 Half Darwin Unseeded NA NA NA 1498.573 1469.747

60 4‐Way One‐Point 0.7 0.005 Half Darwin Unseeded NA NA NA 1503.2 1493.731

61 Roulette One‐Point 0.7 0.005 Full Parricide Unseeded NA NA NA 1450.907 1268.697

62 2‐Way One‐Point 0.7 0.005 Full Parricide Unseeded NA NA NA 1476.31 1278.443

63 3‐Way One‐Point 0.7 0.005 Full Parricide Unseeded NA NA NA 1451.964 1275.17

64 4‐Way One‐Point 0.7 0.005 Full Parricide Unseeded NA NA NA 1509.844 1274.684

Run #
Selection
Technique Crossover Probability Mutation Replacement Seed Overlapping

Generation
Gap Niching Best Average

65 3‐Way Two‐Point 0.7 0.005 Full Darwin Unseeded Yes 0.5 3 1512.593 1414.43

66 2‐Way Two‐Point 0.7 0.005 Full Darwin Unseeded Yes 0.5 3 1467.596 1428.749

67 4‐Way Two‐Point 0.7 0.005 Full Darwin Unseeded Yes 0.5 3 1516.3 1444.09

68 3‐Way One‐Point 0.7 0.005 Full Darwin Unseeded Yes 0.5 3 1489.262 1419.772

69 2‐Way One‐Point 0.7 0.005 Full Darwin Unseeded Yes 0.5 3 1486.473 1455.536

70 4‐Way One‐Point 0.7 0.005 Full Darwin Unseeded Yes 0.5 3 1476.108 1418.365

71 3‐Way Two‐Point 0.7 0.005 Full Darwin Unseeded Yes 0.9 3 1490.371 1458.792

 96

72 2‐Way Two‐Point 0.7 0.005 Full Darwin Unseeded Yes 0.9 3 1487.043 1436.167

73 4‐Way Two‐Point 0.7 0.005 Full Darwin Unseeded Yes 0.9 3 1514.067 1494.353

74 3‐Way One‐Point 0.7 0.005 Full Darwin Unseeded Yes 0.9 3 1526.024 1506.213

75 2‐Way One‐Point 0.7 0.005 Full Darwin Unseeded Yes 0.9 3 1515.218 1478.282

76 4‐Way One‐Point 0.7 0.005 Full Darwin Unseeded Yes 0.9 3 1502.94 1444.956

 97

LIST OF REFERENCES

Alba, Enrique and Carlos Cotta. “Evolutionary Algorithms.”
Handbook of Bioinspired Algorithms and Applications.
Boca Raton: Chapman and Hall/CRC, 2006. Retrieved on
August 17, 2009, from URL:
http://www.engnetbase.com/books/4899/c4754fm.pdf

Coley, David A. (1999). An Introduction to Genetic
Algorithms for Scientists and Engineers. River Edge:
World Scientific Publishing.

Davis, Lawrence, ed. (1991). Handbook of Genetic
Algorithms. New York: Van Nostrand Reinhold.

Goldberg, David E. (1989). Genetic Algorithms in Search,
Optimization, and Machine Learning. Reading:
Addison-Wesley.

Haupt, Randy L. and Sue Ellen Haupt. Practical Genetic
Algorithms. Hoboken: John Wiley and Sons, 2004.

Rich, Susan. “Trevor N. Dupuy.” The Dupuy Institute.
Retrieved on September 17, 2009, from URL:
http://www.dupuyinstitute.org/tndupuy.htm

Schlabach, Jerry L., ed. “The BBE Underlying Combat Model
(UCM).” Version 1.1 May 31, 2007.

Schlabach, Jerry L. “BTRA-BC Battle Engine: Cognitive
Amplification for Battle Staff Planning.” BTRA-BC
Joint-Geospatial Enterprise Service Gazette. Volume
3, 2 QTR 2008. Retrieved on September 1, 2009, from
URL: http://www.agc.army.mil/JGES/gazette.html

Schlabach, Jerry L. and Eric M. Nielsen. (2009). “Cognitive
Amplification for Contextual Game-Theoretic Analysis
of Military Courses of Action.” Invention Disclosure.
Department of the Army.

 98

U.S. Army. (1997). “Chapter Five—The Military Decision
Making Process.” Field Manual Number 101-5.
Washington DC: Headquarters Department of the Army.
Retrieved on August 21, 2009, from URL:
http://www.dtic.mil/doctrine/jel/service_pubs/101_5.pd
f

 99

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Curtis Blais
Naval Postgraduate School
Monterey, California

4. COL Jeff Appleget, USA, (Ret.)
Naval Postgraduate School
Monterey, California

5. Arnold Buss
Naval Postgraduate School
Monterey, California

6. Jerry Schlabach
Army Geospatial Center
Alexandria, Virginia

7. Eric Nielsen
Army Geospatial Center
Alexandria, Virginia

8. Vineet Gupta
Army Geospatial Center
Alexandria, Virginia

